More general waveforms




The concept of wavelength is most often applied to sinusoidal, or nearly sinusoidal, waves, because in a linear system the sinusoid is the unique shape that propagates with no shape change – just a phase change and potentially an amplitude change. The wavelength (or alternatively wavenumber or wave vector) is a characterization of the wave in space, that is functionally related to its frequency, as constrained by the physics of the system. Sinusoids are the simplest traveling wave solutions, and more complex solutions can be built up by superposition.

In the special case of dispersion-free and uniform media, waves other than sinusoids propagate with unchanging shape and constant velocity. In certain circumstances, waves of unchanging shape also can occur in nonlinear media; for example, the figure shows ocean waves in shallow water that have sharper crests and flatter troughs than those of a sinusoid, typical of a cnoidal wave, a traveling wave so named because it is described by the Jacobi elliptic function of m-th order, usually denoted as cn(x; m). Large-amplitude ocean waves with certain shapes can propagate unchanged, because of properties of the nonlinear surface-wave medium.

If a traveling wave has a fixed shape that repeats in space or in time, it is a periodic wave. Such waves are sometimes regarded as having a wavelength even though they are not sinusoidal. As shown in the figure, wavelength is measured between consecutive corresponding points on the waveform.

Wave packetsedit

Localized wave packets, "bursts" of wave action where each wave packet travels as a unit, find application in many fields of physics. A wave packet has an envelope that describes the overall amplitude of the wave; within the envelope, the distance between adjacent peaks or troughs is sometimes called a local wavelength. An example is shown in the figure. In general, the envelope of the wave packet moves at a speed different from the constituent waves.

Using Fourier analysis, wave packets can be analyzed into infinite sums (or integrals) of sinusoidal waves of different wavenumbers or wavelengths.

Louis de Broglie postulated that all particles with a specific value of momentum p have a wavelength λ = h/p, where h is Planck's constant. This hypothesis was at the basis of quantum mechanics. Nowadays, this wavelength is called the de Broglie wavelength. For example, the electrons in a CRT display have a De Broglie wavelength of about 10−13 m. To prevent the wave function for such a particle being spread over all space, de Broglie proposed using wave packets to represent particles that are localized in space. The spatial spread of the wave packet, and the spread of the wavenumbers of sinusoids that make up the packet, correspond to the uncertainties in the particle's position and momentum, the product of which is bounded by Heisenberg uncertainty principle.

Comments

Popular posts from this blog

Subwavelength

Interference and diffraction

15) Republic Day 2020 Parade ILLUSTRATES: Colourful tableaux, daredevilry, government might on display